If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-49x-33=0
a = 10; b = -49; c = -33;
Δ = b2-4ac
Δ = -492-4·10·(-33)
Δ = 3721
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3721}=61$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-61}{2*10}=\frac{-12}{20} =-3/5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+61}{2*10}=\frac{110}{20} =5+1/2 $
| 75=y+25 | | (x+5)+10=2 | | 6x+x-11=-9 | | 10(n+4)=64 | | 12+4j=24 | | 12-3(x+10)=18 | | 3x+17+7x+3=70 | | 37=8m-11 | | –6−9d=–3−10d | | -3(x+10)+2x=40 | | 15+7q=50 | | 7.2+x=16 | | 5+2m=7m | | 16=2s+6 | | 4x²+x+14=0 | | 3x+17+7x+3=7 | | –18−6d=–8−7d | | 58=–8g+74 | | 8t+2=3t+7 | | 20=2x-(15-7x) | | 8(x+9)+2(6x+14)=180 | | 2=2h-10 | | 1/3x=4/13 | | 0.6x+12=12.6 | | r-48/8=5 | | 3/2d+16=39 | | 5(x+14)+13x-10=180 | | j2–14j+13=0 | | -5.7+2.6c=-14.02 | | 8+4.4z=-7.4 | | (y+11)+3=7 | | (2x+12)+(4x-6)=180 |