If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-30x+20=0
a = 10; b = -30; c = +20;
Δ = b2-4ac
Δ = -302-4·10·20
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-30)-10}{2*10}=\frac{20}{20} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-30)+10}{2*10}=\frac{40}{20} =2 $
| 5-7x-4=43 | | 5(4+6x)=110 | | 230-15x=155+10x | | 5+2h=1 | | (4/9)c=20 | | x-3=9x+15 | | 6(1x-9)=-102 | | 8.x+10=13 | | -150+12=2z+6(2z-9) | | 3z2-2z+1=0 | | 8(3m+5)-5m=-20+4m | | 4/5x=11/15 | | 1-6m-5=2 | | 38+7x=5(x+6)-2x | | 7x-10+90+3×=180 | | 5x-40/7=-2x | | 3+7^2x+1=138 | | -3(-3-3n)=-n+19 | | 3/4=p/14 | | -7x-3=-7(1-4x)+4 | | m+4.6=-4 | | 12+8b=-1+3(5b-5) | | 12x+18+2x=14x | | 4+3t=9 | | 8x—6x—25=-35 | | 6(1/3-y)=(7/5+15y) | | 6(7b-5)-4=7b+1 | | 6x–30=x | | 10+2f=12 | | 8m+6(-2m+7)=-10 | | x/365=3287 | | -24+7b=4(1+b)-b |