If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2-15x=0
a = 10; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·10·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*10}=\frac{0}{20} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*10}=\frac{30}{20} =1+1/2 $
| 6(5-4m)=-4m+10 | | 13r-20=6r+36 | | 3e+6e+20=92 | | 27=7x÷3-4x | | 5(2x+2)=3(3-1) | | 13r-20=6r=36 | | 2/x+3=3/x-5 | | 2(t+6)=58 | | 5(1x+6)=35 | | -7+3m=14 | | 4x+4=11x-17 | | 15-5√3n=0 | | -18-6y=18 | | 6-7p=-7p+6 | | 0.6x+x=1 | | 15-5√(3n=0 | | 34x-95=3(14x+9) | | 20=1/2(-9.8)t^2 | | 4x-6(78)+-71=50 | | -5+3v2=-89 | | 32=4(2-3x) | | |6−10x|=|x−10| | | 6x-64=2(x-22) | | 32=4(2-3x | | 3=x4-3 | | 6x=24=0 | | 8x-7=6x-3 | | n+2=-16+n+6-4n | | 3(s−15)−5=1 | | -12=3(-x+3) | | 2v+4=-16-2v | | 13+6n=1+8n-4n |