If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+5x-75=0
a = 10; b = 5; c = -75;
Δ = b2-4ac
Δ = 52-4·10·(-75)
Δ = 3025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3025}=55$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-55}{2*10}=\frac{-60}{20} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+55}{2*10}=\frac{50}{20} =2+1/2 $
| -3(4+3)+49x+1)=43 | | 1/4(12x-8)=13 | | 2p+36=-12 | | 9y+12-3y=6 | | x+52+75+x+61=180 | | 9b+-13=-58 | | 5^x+1=5^2x+3 | | 7/4x+24=-20 | | 7x+1=4x−5 | | 10n+12=3(3n+4)+n | | 7(x–2)–6x+1=3–4x | | 2y+8=3y+12 | | 4(3x+5)=-38-3x | | 10x+38+18x-2=21 | | 1-7r-8r=-2+3-8r-7r | | -3+2s=13 | | -1-8u=-7u-11 | | 10-2x=9x+43 | | -4=z/5+6 | | 2+3(x-3)-1=19 | | -6x-20-7=-37 | | 2u—-30=88 | | -1/3=1/2u-5/7 | | -7k+1-15k=-11-20k | | -3+1+6p-4p=1+2p-3 | | 1/2x+6=34 | | -3+1+1+6p-4p=1+2p-3 | | 7a+2 | | q-70=12 | | 15x-15+x=-2 | | z/2-7=8.5 | | -2n+-5=-2(n+2.5) |