If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+59x+76=0
a = 10; b = 59; c = +76;
Δ = b2-4ac
Δ = 592-4·10·76
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-21}{2*10}=\frac{-80}{20} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+21}{2*10}=\frac{-38}{20} =-1+9/10 $
| 12n-6/3=4n-3 | | 5y/2=15/2 | | 5y/2=151/2 | | x2+-18x+34=0 | | 6n+9=-3n-21-6= | | 2x+9x+8-3x=16 | | 2-6x=5-5(x-1)= | | 1/3x=1/4x+5 | | 4x-13=2x+9= | | 4x-4=15+3 | | N^2-11n+40=0 | | H(5)=0.3x+9.7 | | N2-11n+40=0 | | 9m=12+5m | | H(t)=-16^2+54t+24 | | 0=2x^2+9x-18 | | 4=2/7w | | y=|-2-2|+3 | | 5x+2+3x+5=540 | | 10x+9x=85 | | 3(x+5)²=48 | | –7x+10=–20 | | y+40=10 | | 16x+12=140 | | 6w+20=130 | | 281/6+132/5=x | | z/2-3/4=21/4 | | 6w+20=6w130 | | 14=2×w | | x-9=4x+18 | | 10-1=5x+6 | | 62+x=x+118 |