If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+59x+63=0
a = 10; b = 59; c = +63;
Δ = b2-4ac
Δ = 592-4·10·63
Δ = 961
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{961}=31$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(59)-31}{2*10}=\frac{-90}{20} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(59)+31}{2*10}=\frac{-28}{20} =-1+2/5 $
| 4*n=70 | | 4.58+y=2.53 | | 12=7n=n-6 | | j+5.57=14.57 | | -9-6x=-33 | | g/2=2.28 | | 3+3x-x-2=3x+4 | | 4p-2=7(p-4)-5(6-3p) | | -1-4p=-6-2(8+2p) | | c/4=3.77 | | -25b^2+35b-6=0 | | 8x+7x-69=115-8x | | 16-x=18-3x | | 16.28=4z | | 3x+2(-7)=-23 | | 130=2x+6 | | 8x+9x-63=84-4x | | x-4=-2x-9 | | 25a^2-35a+6=0 | | 2x+6+x=18 | | 5-2x5x+3=13 | | -25a^2+35a+6=0 | | 0.7p-0.4=3.52-0.28 | | 3x+5x-50=180 | | x+0.5x=158.55 | | 21=5(x+3 | | 5+10x+45=180 | | t-3.15=4.03 | | 7y-13-2y+9=0 | | 6p-5(5p+5)=-8-2(p+12) | | Y=168+8x | | 6/f=4/6 |