If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+4x=32
We move all terms to the left:
10x^2+4x-(32)=0
a = 10; b = 4; c = -32;
Δ = b2-4ac
Δ = 42-4·10·(-32)
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-36}{2*10}=\frac{-40}{20} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+36}{2*10}=\frac{32}{20} =1+3/5 $
| -10=+-4n+2n | | .20x+.25(50)=25.5 | | -23=1+4x+2x | | 30=-60n | | -5v-7=8 | | (x)=24/8^2 | | 16a-5a+8=2 | | -4x-5=2x=9 | | j3+14=18 | | 4x+2x+x-10=11 | | 4x-17=-3(x-6) | | j3+ 14=18 | | 4-0.25x10=0.5x5 | | 8(t+5+2=4.8t+4 | | -5y-7=6y+15 | | 150+(-100x)+12x^2=0 | | 86-5y+9y^2=90 | | -4p+2(4-2p)=16 | | 84-v=254 | | 150+-100x+12x^2=0 | | 155=8-w | | 10x+6=5x+9 | | -78=6(5+6n) | | 4x-26=6 | | 9x+2x+10=10 | | 3x+5+2=180 | | 8/24x+3/24x=46 | | 12x3-36x2+-480x=0 | | 2w-6=2(43)-6 | | 6t+3=7t | | 10x(2.1+)=100 | | 5x=100-25 |