If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+21x+11=0
a = 10; b = 21; c = +11;
Δ = b2-4ac
Δ = 212-4·10·11
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-1}{2*10}=\frac{-22}{20} =-1+1/10 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+1}{2*10}=\frac{-20}{20} =-1 $
| -1.6x-5=7.88 | | 3(v−62)=30 | | 3(x+6)=-4x+32 | | 36=5a+1 | | 9^2x+1-3^x+1=6=0 | | 2(2q-3)=0 | | 5(w-783)=350 | | u/6.4=2 | | 5/4*x=15 | | -9x-12=3(x+8) | | h+45/17=6 | | 2^-x+5=4^3x+1 | | t6+6=11 | | 9(4+3a)=-31 | | 2(2q-3)(q-1)=0 | | 7+8c=39 | | 5=6(x+3)+7x | | 15=p+72/13 | | 26=s+20 | | (7a3−2a−2)+(−5a+3)=4 | | 4.9/(2+5)=v | | 19=7(w-3)-2w | | m+31=107 | | v+129/24=11 | | 3-7(1-5s)=-23 | | 7(w+7)=63 | | 5(u-3)-3=-4(-2u+7)-7u | | 26(b+34)=936 | | 0=-x^2+5x+50 | | -3x+5-2x=10x-25 | | 4z+9=17 | | n+12n+12−12n =18.3 |