If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+15x-11=0
a = 10; b = 15; c = -11;
Δ = b2-4ac
Δ = 152-4·10·(-11)
Δ = 665
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{665}}{2*10}=\frac{-15-\sqrt{665}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{665}}{2*10}=\frac{-15+\sqrt{665}}{20} $
| -(5x+6x)=8-8x-x | | 34=5.a=7 | | 7(4+2x)-4=16+7-4 | | -3(x-9)+4x=x+9 | | x+1123= | | 1/2x+2=-5/8x-5 | | 7(x-10)-6x=x-70 | | 7*(4+2x)-4=16+7-4 | | 3(z+7)^3+(z+7)^5=0 | | 10(-x-7)+20=-5(2x+4) | | 19x2-20x+5=0 | | (x+1)2−x2=17 | | 19x2-20+5=0 | | x*13=24 | | w2−3=0.8 | | y+6−2=−10 | | 30x2-21x+3=0 | | 3a-9=13 | | 935=1.05*x | | 30x2-21+3=0 | | 6n=12n-54 | | -81x2+18x-9=0 | | P=2,320(1.2)^x | | 24÷(x–4)=3 | | 34x-15x+7=0 | | 34x2-15x+7=0 | | -3q+5=8 | | 6x*1=6x | | -5(x-3)=2(x+3)-12 | | 6x+1x=6x^2 | | 32.5-y=18 | | -12x2+25x+1=0 |