If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+10x=140
We move all terms to the left:
10x^2+10x-(140)=0
a = 10; b = 10; c = -140;
Δ = b2-4ac
Δ = 102-4·10·(-140)
Δ = 5700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5700}=\sqrt{100*57}=\sqrt{100}*\sqrt{57}=10\sqrt{57}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{57}}{2*10}=\frac{-10-10\sqrt{57}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{57}}{2*10}=\frac{-10+10\sqrt{57}}{20} $
| 4x+5+5x=6x-8+2x | | 325=25x | | 0.6x-0.8(3-x)=1.1 | | 0=3x^2-x-6 | | y=7.5+16 | | 7y-2=1/2(10y+20) | | 77x+31=180 | | 1=-9+8x | | 729=(3x)^3/2 | | 34+x=46;=13 | | 7y-2=1/2(10y-20) | | 15=-5(2n+2) | | 7y-2=1/2(10y=20) | | 18x-7=12x+9 | | -8+x/5=11 | | 2x-13=5x+5 | | 63=n+3(n+3) | | P=15-0.5q | | 18x-7=12x+9=4x | | -12=2r=19 | | x=5(x)=24 | | 1/2(14x+20)=24 | | 7w+16=27 | | 2.5/x=11 | | 9=x+1/3 | | 19×m=29 | | -50+5/13pp=-26 | | 5-5/2x=-7 | | 8p-42=0 | | 6+y/4=9 | | -5n+9=-56 | | 1/5r+4=3/5r-10 |