If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x-3+4=5+8x(4-3x)
We move all terms to the left:
10x-3+4-(5+8x(4-3x))=0
We add all the numbers together, and all the variables
10x-(5+8x(-3x+4))-3+4=0
We add all the numbers together, and all the variables
10x-(5+8x(-3x+4))+1=0
We calculate terms in parentheses: -(5+8x(-3x+4)), so:We get rid of parentheses
5+8x(-3x+4)
determiningTheFunctionDomain 8x(-3x+4)+5
We multiply parentheses
-24x^2+32x+5
Back to the equation:
-(-24x^2+32x+5)
24x^2-32x+10x-5+1=0
We add all the numbers together, and all the variables
24x^2-22x-4=0
a = 24; b = -22; c = -4;
Δ = b2-4ac
Δ = -222-4·24·(-4)
Δ = 868
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{868}=\sqrt{4*217}=\sqrt{4}*\sqrt{217}=2\sqrt{217}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-2\sqrt{217}}{2*24}=\frac{22-2\sqrt{217}}{48} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+2\sqrt{217}}{2*24}=\frac{22+2\sqrt{217}}{48} $
| 14h-6h-5h-3h+4h=8 | | 12n-10n-2n+n=15 | | 14m-13m+m=2 | | 6t-t=15 | | 4c+c=5 | | 1+x/9=0 | | 11r-8r=12 | | -7x-16=10 | | 7y-4=5y/12 | | 71=17^x | | 3^x=77 | | 6x-11=4x+33 | | 23+5x=(7+2.5x) | | 7x+15=5(x-3) | | 7/5+4/5x=59/20+7/4x+3/4 | | 1/3(m+10)-6=1/4(m-7) | | X+4/16=1/8+x-2/6 | | 11+x=233 | | 14/5+4x=9x-1/5 | | 8y=18y-81 | | 2y=12y-27 | | 8y=44y-88 | | 5x=28-2 | | 2(x-4)^(7/3)-(x-4)^(4/3)-(x-4)^(1/3)=0 | | u^2-u^-1-36=0 | | c/7=-11 | | X+(3-x/3)=x/3 | | 3y/5=6y-9 | | 3n+5=6n-13 | | 3(x-2)=6x+6-3(-3x-1) | | x^2-2x=3/8 | | 6r+7=13+8r |