If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x(x+9)=350
We move all terms to the left:
10x(x+9)-(350)=0
We multiply parentheses
10x^2+90x-350=0
a = 10; b = 90; c = -350;
Δ = b2-4ac
Δ = 902-4·10·(-350)
Δ = 22100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{22100}=\sqrt{100*221}=\sqrt{100}*\sqrt{221}=10\sqrt{221}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-10\sqrt{221}}{2*10}=\frac{-90-10\sqrt{221}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+10\sqrt{221}}{2*10}=\frac{-90+10\sqrt{221}}{20} $
| 0.33x+80=0.5x+120 | | 2q+2q=16/2 | | 50=5x-3-8x7 | | X=57x-9x= | | (8x+7)=1 | | ⅓x+80=½x+120 | | -31-4x=7(2-4x)+3 | | Y=|x+2|+1 | | 3(10.5)+3y=46 | | (z-26)+z=(z+39) | | 2x–1=2(x+7) | | 4x=72+8x | | 23=y+40 | | 1/5(x-2)=1/10(x | | 23=y+40. | | (c-43)+c=(c+34) | | 4x+2x+20=6x+2.10 | | 3(2x)-1+5x=10(x-1) | | 3(6p-5)=5p+11 | | 23x+10=9x−2 | | 6b/3+3=7 | | -5x+5=-2 | | 30-3x=6x | | 2(4x+51)=7-3x | | (a-43)+a=(a+44) | | 2x²-x=91 | | 5c-4=c+4c | | 8(1-5x)+5=-13x-8(3x+2)+11 | | -11(x+-4)=-44 | | 0.5(x-9)=22.5 | | 2a-2=6 | | (9a+8)–(a+1)=0 |