10x(9-x)=x+10(9-x)+27

Simple and best practice solution for 10x(9-x)=x+10(9-x)+27 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x(9-x)=x+10(9-x)+27 equation:



10x(9-x)=x+10(9-x)+27
We move all terms to the left:
10x(9-x)-(x+10(9-x)+27)=0
We add all the numbers together, and all the variables
10x(-1x+9)-(x+10(-1x+9)+27)=0
We multiply parentheses
-10x^2+90x-(x+10(-1x+9)+27)=0
We calculate terms in parentheses: -(x+10(-1x+9)+27), so:
x+10(-1x+9)+27
We multiply parentheses
x-10x+90+27
We add all the numbers together, and all the variables
-9x+117
Back to the equation:
-(-9x+117)
We get rid of parentheses
-10x^2+90x+9x-117=0
We add all the numbers together, and all the variables
-10x^2+99x-117=0
a = -10; b = 99; c = -117;
Δ = b2-4ac
Δ = 992-4·(-10)·(-117)
Δ = 5121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5121}=\sqrt{9*569}=\sqrt{9}*\sqrt{569}=3\sqrt{569}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(99)-3\sqrt{569}}{2*-10}=\frac{-99-3\sqrt{569}}{-20} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(99)+3\sqrt{569}}{2*-10}=\frac{-99+3\sqrt{569}}{-20} $

See similar equations:

| 2p+7=-17/7 | | 3x/4-5x/6=-1 | | 5x/4-5x/6=-1 | | 28d^2-d=0 | | 12-5x=-4+3x | | 4k+1=3k+3 | | 7e+5=4e-1 | | 0.85x=0.35 | | 5/(y-1)-3=4/y | | 17+3(x-2)=23 | | 8x-13=(2x+5) | | 13.25=1.5x^2 | | X+(y)-10=40 | | -2(p+1)-4=-34 | | 16^x=0.2 | | 2^2x+2-5.9^x=324 | | 12w+8=11w+5 | | x/20=40 | | Y=(0.2^3-0.3x^2+0.1)(-0.1x5+0.4x^2+4)+0.3 | | 13x=7x-16 | | 11t+5(5-t)=43 | | 3-x/4=5x+1/3 | | x^2-5x-200=0 | | 6(2+8)=3(5+4h) | | 2x^2+3x+0.5=0 | | 5.5=(40-x)/11 | | ((3x+4)/8))=((x+2)/3)) | | (3x+4/8)=(x+2/3) | | 4x^2-20x-225=0 | | 6x5280=31680 | | 3e=37 | | 3e=123 |

Equations solver categories