10x(3x+2)=9x-(5x-4)

Simple and best practice solution for 10x(3x+2)=9x-(5x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x(3x+2)=9x-(5x-4) equation:



10x(3x+2)=9x-(5x-4)
We move all terms to the left:
10x(3x+2)-(9x-(5x-4))=0
We multiply parentheses
30x^2+20x-(9x-(5x-4))=0
We calculate terms in parentheses: -(9x-(5x-4)), so:
9x-(5x-4)
We get rid of parentheses
9x-5x+4
We add all the numbers together, and all the variables
4x+4
Back to the equation:
-(4x+4)
We get rid of parentheses
30x^2+20x-4x-4=0
We add all the numbers together, and all the variables
30x^2+16x-4=0
a = 30; b = 16; c = -4;
Δ = b2-4ac
Δ = 162-4·30·(-4)
Δ = 736
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{736}=\sqrt{16*46}=\sqrt{16}*\sqrt{46}=4\sqrt{46}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{46}}{2*30}=\frac{-16-4\sqrt{46}}{60} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{46}}{2*30}=\frac{-16+4\sqrt{46}}{60} $

See similar equations:

| -6x-230=3x+103 | | 2c=434 | | -5+6x=-8x+4 | | 4x=180-99 | | 2a+7=180-109 | | 8=e/3+5 | | 6(2x+4)=4(2x+6) | | 33x+23=41+51x | | 27/5x-5=2/5x | | 2x+2x+3x=7x+3 | | -3x=-7x-6x | | -12-201=144+11x | | 3x-7/4-3=8 | | 2x+2x+3x=6x+3 | | w/(-2.5)=8 | | 8.75t+5=17.5t+12 | | 2x+2x+3x=5x+3 | | 21/3+n=92/3 | | 4+3d=3(5+d) | | -15+x=34 | | 6(5-8v)12=-54 | | 2x+2x+3x=4x+3 | | 4=9-8x | | 2x+2x+3x=3x+3 | | 2x+2x+3x=1x+3 | | 10-1~n=-2~n+35 | | y+15-8=32 | | 13=m+6/7 | | 2x+2x+3x=2x+3 | | 7/5x-1=2/5x | | x-1/2-x-2/4=2 | | 8+5b=7b-2 |

Equations solver categories