10x(2x-9)=-3(15-4x)

Simple and best practice solution for 10x(2x-9)=-3(15-4x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10x(2x-9)=-3(15-4x) equation:



10x(2x-9)=-3(15-4x)
We move all terms to the left:
10x(2x-9)-(-3(15-4x))=0
We add all the numbers together, and all the variables
10x(2x-9)-(-3(-4x+15))=0
We multiply parentheses
20x^2-90x-(-3(-4x+15))=0
We calculate terms in parentheses: -(-3(-4x+15)), so:
-3(-4x+15)
We multiply parentheses
12x-45
Back to the equation:
-(12x-45)
We get rid of parentheses
20x^2-90x-12x+45=0
We add all the numbers together, and all the variables
20x^2-102x+45=0
a = 20; b = -102; c = +45;
Δ = b2-4ac
Δ = -1022-4·20·45
Δ = 6804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{6804}=\sqrt{324*21}=\sqrt{324}*\sqrt{21}=18\sqrt{21}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-102)-18\sqrt{21}}{2*20}=\frac{102-18\sqrt{21}}{40} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-102)+18\sqrt{21}}{2*20}=\frac{102+18\sqrt{21}}{40} $

See similar equations:

| X^2+x=89 | | 5n-12=3n=4 | | 3(3+x)=14-6x | | -4.5=3x+25.5 | | 5.4a+12=76.8 | | X=(y-5)(y-5) | | 3/2x-12=1/2-1/2x | | 6a-(9a+2)-3(a-1)=2 | | X^2+90x=7925 | | 0=3x-5/(x+3)(x-3) | | ((2x+2)+x)2=184 | | 50-(x+7)^2=68 | | 2u-4=-18 | | -2/3b=6 | | X^3+22x+121=0 | | 5/9v=-15 | | 3(3+x)=10-6x | | 2x(x+3)=5(8-x) | | 2(6+x)=14-3x | | 2(x-3)-(x-6)=15 | | 2=3(2n) | | 2(7-8x=32-10x | | 0.17(9x+3)=3x+4 | | x+6/2+x+2/2=3 | | x(4)=9(4)+4 | | 4/5x=0.2 | | 2/3x-1/2=1/3 | | 600+800x-800x^2=0 | | 2.6x=169/50 | | 1=3x=2x=14 | | 2y=3×+9 | | 2.6x=319/50 |

Equations solver categories