If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10w^2=1000
We move all terms to the left:
10w^2-(1000)=0
a = 10; b = 0; c = -1000;
Δ = b2-4ac
Δ = 02-4·10·(-1000)
Δ = 40000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{40000}=200$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-200}{2*10}=\frac{-200}{20} =-10 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+200}{2*10}=\frac{200}{20} =10 $
| −5.6=5h +12.2 | | Y=3x^2-x+11 | | 8y=484)18= | | 4(1/2x+3)=8;x=$2.50 | | 4x-12+8x,x=-6 | | 5x-+10-2x=40 | | Y=(3x^2-x+11)/5x | | 19=u+18 | | 2x^2+30x-25=0 | | (4x+6)/2=2x+3 | | 8x2-48x-56=0 | | 9^-x-5=27 | | 3^(x^2-7)=27^2x | | y=50,000-9X | | 4(t–19)=–12 | | 61+3s=-3s+13 | | -5t-19=5t+41 | | 3(h+–1)=3 | | x–11=15 | | 4b-22=8+4(b-8) | | (7x+8)=9x-4) | | 10=b-12 | | -5t-19=5t=41 | | 20-7x=-9x | | -4b-20=78+10b | | 32+2x=4+27 | | -10b-9(b-6)=-79 | | -3(15x–9)=18 | | -9w=-w-64 | | 3x^-8x-25=0 | | 3/5p+18=2 | | -4r-3(r+6)=-39 |