If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10w^2-13w-3=0
a = 10; b = -13; c = -3;
Δ = b2-4ac
Δ = -132-4·10·(-3)
Δ = 289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{289}=17$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-17}{2*10}=\frac{-4}{20} =-1/5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+17}{2*10}=\frac{30}{20} =1+1/2 $
| (5x+1)^2+64=0 | | 2x+2+5x+2=0 | | P^2-6p=8 | | P2-6p=8 | | 3x+11x+x/2=-7/2+18 | | X/y=7/4 | | 3x2=x+2 | | 2X+5=-x2 | | X2+8x=240 | | (2x-5)-9=0 | | 5-5a=10 | | 3x−2=−14 | | 7w+13=19 | | 156=3h | | 11x^2-32x+48=0 | | 200÷3×x=432 | | z+2/4=5 | | 12t^2-59t+72=0 | | 2x-10=-14+4 | | 7x/8=25 | | 6x9=23+ | | (6x+48)-4x=(4x+38)-4 | | 8z+5=23-11 | | -0.02x^2+0.8x+1.8=0 | | 5-m=9-14, | | x+3x+6x+18x=22+13x | | x+3x+6x+18x-13x=22+13x | | h=(288-2*3/5h)/2 | | H=(288-6/5h)/2 | | 61-7x=47 | | 6/5h+2h=288 | | 6x-5=x+45 |