If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10w^2+6w=0
a = 10; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·10·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*10}=\frac{-12}{20} =-3/5 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*10}=\frac{0}{20} =0 $
| 1024^3x-2=256 | | P-50+p=p+48 | | b-33+b-43=b | | B-39+b=b+42 | | 15-7y+2y=5(3-y) | | B+b-18=b+39 | | 3x+4x-8=21 | | P=8q-1/q | | P=8q-1/P | | 20-4h=24 | | F(x)=-x^-6x+1 | | B-20+b+20=b | | U-38+u-48=u | | (X+(x-30))=93600 | | X^+11x+8=0 | | 2x(x+9)=(1x-5)(x+9) | | 1.1(2.2x+3.37=4.4 | | 5x-7+3=15 | | 5(3+x)-2x=27 | | 9x-6=6x-1 | | 18=5y+3y-8 | | 2v+3v+v+36=180 | | 12-6x+5=36 | | x-1/3x+1/5x=13 | | 4(8-5)+2x=-40 | | 1-7y+2y=5(3-y) | | 30+2w+w-27=180 | | m/8=4/5 | | 60+19y=6 | | -6n=-3n | | y+31/2=6 | | 4x-6/2+2x-2=2x+11/5 |