10t(t-4)+8t=6(3t+5)-9

Simple and best practice solution for 10t(t-4)+8t=6(3t+5)-9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10t(t-4)+8t=6(3t+5)-9 equation:



10t(t-4)+8t=6(3t+5)-9
We move all terms to the left:
10t(t-4)+8t-(6(3t+5)-9)=0
We add all the numbers together, and all the variables
8t+10t(t-4)-(6(3t+5)-9)=0
We multiply parentheses
10t^2+8t-40t-(6(3t+5)-9)=0
We calculate terms in parentheses: -(6(3t+5)-9), so:
6(3t+5)-9
We multiply parentheses
18t+30-9
We add all the numbers together, and all the variables
18t+21
Back to the equation:
-(18t+21)
We add all the numbers together, and all the variables
10t^2-32t-(18t+21)=0
We get rid of parentheses
10t^2-32t-18t-21=0
We add all the numbers together, and all the variables
10t^2-50t-21=0
a = 10; b = -50; c = -21;
Δ = b2-4ac
Δ = -502-4·10·(-21)
Δ = 3340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{3340}=\sqrt{4*835}=\sqrt{4}*\sqrt{835}=2\sqrt{835}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-50)-2\sqrt{835}}{2*10}=\frac{50-2\sqrt{835}}{20} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-50)+2\sqrt{835}}{2*10}=\frac{50+2\sqrt{835}}{20} $

See similar equations:

| m+m+12=24 | | 16w=24+8w | | 6w=24+8w | | G=-3x+3 | | -0.5(a-8)=3.5 | | x/3+x/5=4/15 | | 28/x+4=11 | | 7x+92=6x+91 | | 6x+3=2x=10 | | 5z-7=4z-4 | | 5z-7=(2z+2)(2z+2) | | 200=5^x-1) | | -31+4x=7x+41 | | 11-3=5x-9 | | 0=-3x^2+28x-64 | | 9^x+1=1/243 | | 10x+8-5x=5x+8 | | 2x+19=x+40 | | 2x-42=7x+38 | | x+.05x=14.7 | | 6p=1/6 | | .5x+1.5=3.5 | | .5x=1.5=3.5 | | (x-4)(28/2)=-17 | | (x+8)2−1=0 | | 1/2+x=1.50 | | 4(2x-5)=3(x-5) | | 2459=(1000g)/25 | | 4x^2+3(x-1)=9 | | 3x+8+13x-x-31=-2 | | -2x+1.5=21 | | 0=7x^2−567 |

Equations solver categories