If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10r^2-7r=0
a = 10; b = -7; c = 0;
Δ = b2-4ac
Δ = -72-4·10·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-7}{2*10}=\frac{0}{20} =0 $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+7}{2*10}=\frac{14}{20} =7/10 $
| -9-2v=-39 | | 3(n−65)=72 | | x+73=-6x-4 | | 4/x+3/5=8 | | 14/34=x/51= | | 4x+35=8 | | 50b+225=175 | | 7x-3x=7x+3x-24 | | 10+2x-4=2x+1+x | | t/4−1=3 | | 5x+3x=(4x-5)-2 | | 9/9(x+5)=21 | | 7^x/3=12 | | -4(3/2x+-1/2)=-15 | | p-72/3=8 | | 3b−8=1 | | 25(x-3=175)=4 | | T+10+t+20+t=180 | | 25(x15)=4 | | 5−2q=1 | | 5w-5=10 | | 6t-1=0 | | 6t+1=0 | | p−72/3=8 | | 3x^2+18x-216=0 | | c/3−3=1 | | 2.5=1.075^12t | | 2y+12=50 | | v-72/6=3 | | v-73/6=3 | | v−72/6=3 | | 22(4/3)-1/3=x+7 |