If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10q(q+2)+3(q-3)=5
We move all terms to the left:
10q(q+2)+3(q-3)-(5)=0
We multiply parentheses
10q^2+20q+3q-9-5=0
We add all the numbers together, and all the variables
10q^2+23q-14=0
a = 10; b = 23; c = -14;
Δ = b2-4ac
Δ = 232-4·10·(-14)
Δ = 1089
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1089}=33$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-33}{2*10}=\frac{-56}{20} =-2+4/5 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+33}{2*10}=\frac{10}{20} =1/2 $
| 4/5y+10=0 | | (1-5x)=0 | | (1+5x)=0 | | 4x3+2x-6=0 | | 2=10/x×x-500/2 | | 4x=10x-5000 | | 4x+x-25+50=180 | | 8(x-2)+6x=12 | | 3(t+7)-8t=-4 | | 18x38+15=699 | | 7(s+2)=91 | | 2-(-4t)=10 | | 4x^2(x+4)=0 | | k/2-3=-2 | | -10=5-3c | | w/3+1=0 | | k/3-(-7)=9 | | 2r-(-4)=6 | | (19x)^2=0 | | x-2(3)=4 | | x-2(2)=4 | | 3+-2y=4 | | F(x)=131.75 | | 1+-2y=4 | | 3x²-9x=6 | | 5x+65=(85+x) | | (2(x+5))=3x+3 | | (2(x+5))=3x3 | | (2(x+5))=3x=3 | | C=190x+1785 | | 2k=12*(-2.6) | | 190t+300=t |