If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n^2-2n-6=0
a = 10; b = -2; c = -6;
Δ = b2-4ac
Δ = -22-4·10·(-6)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{61}}{2*10}=\frac{2-2\sqrt{61}}{20} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{61}}{2*10}=\frac{2+2\sqrt{61}}{20} $
| 13(x-6)=8-5 | | 1÷5(10a-15)=3-2a | | 18=4k+6k= | | (3x+6)-(4+2x)=6 | | x+6/2=6 | | 5–8d=16 | | x^2+4x-9=5x^2+3 | | (3x-35)/4=-5 | | 14=10x=24 | | 5z-27=28 | | j2+ 4= 7 | | 2=(3x+16)/5 | | 24=2x-4=30 | | a÷2-8=-13 | | 5a+6=a^2 | | 2c+20=47 | | x+3/4+x-5/3=0 | | -19=4x-3 | | -16(t-3)+5t=7(3t+4)-13 | | 21a-14a^2=0 | | s3+ 13= 16 | | -21x-5=40x | | 5s-2s+5s-2=14 | | 13x^2-2x+5=0 | | 68-x+x=180 | | 15–2g=11 | | 2(3c-8)=38 | | X+3+3x+2=2x+3 | | 19t-16t-t-t=18 | | (x+2/5)=35 | | 3r^2+5=25 | | 9y+4y=30 |