If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10f^2+21f+2=0
a = 10; b = 21; c = +2;
Δ = b2-4ac
Δ = 212-4·10·2
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(21)-19}{2*10}=\frac{-40}{20} =-2 $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(21)+19}{2*10}=\frac{-2}{20} =-1/10 $
| 3x+6=153 | | 10^-2x=94 | | 7y+17=122 | | 2350=25(p+15) | | 5a-4=3a+26 | | 20/v-6=-2 | | 8y2+14y+5=0 | | 7^1-2x=5^7x | | 7x^2+35x+35=0 | | x^2-2x-8=4^2 | | 44=4x-(-8) | | 3(3w+5)/5=8 | | a÷5+8=11 | | 44=4x-8 | | 4x-1=33 | | (K^2)-(5k)+(6)=0 | | y=1/2-(2)-3 | | 8a+a/2=112 | | v+-10=-1 | | -2=q/2 | | 4p-2=6-2p | | n+-12=-5 | | 42=11x-13 | | x-2/5=1/6 | | 6+8k=6(1-6k) | | 19x+3=11x+2+9x+1 | | -8(x+2)=-x-37 | | -7+2x=4(2x+10)+x | | 3x+11x=-7+x | | 5-7(v-8)=v+37 | | -8+3n=-8(4n+1) | | 5y^2+3y=120 |