103(x2)=31

Simple and best practice solution for 103(x2)=31 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 103(x2)=31 equation:



103(x2)=31
We move all terms to the left:
103(x2)-(31)=0
We add all the numbers together, and all the variables
103x^2-31=0
a = 103; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·103·(-31)
Δ = 12772
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12772}=\sqrt{4*3193}=\sqrt{4}*\sqrt{3193}=2\sqrt{3193}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3193}}{2*103}=\frac{0-2\sqrt{3193}}{206} =-\frac{2\sqrt{3193}}{206} =-\frac{\sqrt{3193}}{103} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3193}}{2*103}=\frac{0+2\sqrt{3193}}{206} =\frac{2\sqrt{3193}}{206} =\frac{\sqrt{3193}}{103} $

See similar equations:

| 4-2(x+2)=16 | | 7^2x-1=39 | | 3m+3+33=90 | | 6+4(x-4)=4-9(x-5) | | 9n-24=4n | | (4+3r)3=3-4r | | 4-(6x+4)=6-x | | -21=-w/6 | | (4x+15)=11x | | x+9=1/2x+3 | | -2x-22=3x+13 | | y/4-16=1 | | 10=u/3+8 | | 3•3x=3•3 | | 7+2x=6x+11 | | 5x(2)=110 | | 6x^2-11x=17 | | (3x+14)+(4x+13)=90 | | (6x-7)+(5x+9)=90 | | 2x+1(30-x)=11 | | -x+2=-4x-4 | | −2+2y=−2 | | (2x+1)–3(x–1)=8 | | 7x²-4x=5 | | 3x+19=26 | | 4y/8=-8 | | x+x+2x+2x=100 | | 12=20+4y8 | | 14x3=10x+1 | | x+x+x+x=4.5 | | m=;(5,6) | | -25n+16=8 |

Equations solver categories