If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100x^2+42=400
We move all terms to the left:
100x^2+42-(400)=0
We add all the numbers together, and all the variables
100x^2-358=0
a = 100; b = 0; c = -358;
Δ = b2-4ac
Δ = 02-4·100·(-358)
Δ = 143200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{143200}=\sqrt{400*358}=\sqrt{400}*\sqrt{358}=20\sqrt{358}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{358}}{2*100}=\frac{0-20\sqrt{358}}{200} =-\frac{20\sqrt{358}}{200} =-\frac{\sqrt{358}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{358}}{2*100}=\frac{0+20\sqrt{358}}{200} =\frac{20\sqrt{358}}{200} =\frac{\sqrt{358}}{10} $
| 11+3(m+3=2 | | 4x+7=3x−7 | | 1=a-13-6 | | 14-6p+-1=24+6p | | 99+v=-45 | | Y-2z=-3 | | 11y=7y+2 | | 2x°=(X+75)° | | x3+200=-16 | | 26x+18=45x-345 | | 1200+40x=120+50x | | 895=4x | | -8x+6(x+5)=26-4x | | 8x+48+7x+42=7x-7 | | 65=4.5t^2+43.5t+17 | | 3w+7(w-4)=22 | | z/7+10=53 | | T(x)=-2.4x+90.8x+1.59 | | 5x/2+3/5=2x/6+9/3 | | -7f+2.5=19f-4 | | 2(8x-1)+7(x+15)=-59 | | -17-(-12)=x/12 | | 6^6x=225 | | -2(8n-1)-2=15-n | | X=600x-6x^2 | | 3x-2/8+2-x/4=(-1/2) | | 3x/2+2/6=9x/7+6/3 | | (6x+5)=-6x+13 | | 5x-3(x-5)=-2+5x-7 | | ∣5w−7∣=8 | | -16x+1=12x+16 | | 5(6x+2)=2(x-1) |