If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100b=32487/342b
We move all terms to the left:
100b-(32487/342b)=0
Domain of the equation: 342b)!=0We add all the numbers together, and all the variables
b!=0/1
b!=0
b∈R
100b-(+32487/342b)=0
We get rid of parentheses
100b-32487/342b=0
We multiply all the terms by the denominator
100b*342b-32487=0
Wy multiply elements
34200b^2-32487=0
a = 34200; b = 0; c = -32487;
Δ = b2-4ac
Δ = 02-4·34200·(-32487)
Δ = 4444221600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4444221600}=\sqrt{176400*25194}=\sqrt{176400}*\sqrt{25194}=420\sqrt{25194}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-420\sqrt{25194}}{2*34200}=\frac{0-420\sqrt{25194}}{68400} =-\frac{420\sqrt{25194}}{68400} =-\frac{7\sqrt{25194}}{1140} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+420\sqrt{25194}}{2*34200}=\frac{0+420\sqrt{25194}}{68400} =\frac{420\sqrt{25194}}{68400} =\frac{7\sqrt{25194}}{1140} $
| (6x+7)+(5x+11)+(12x+6)=180 | | 3(2x+9)=-33+18 | | 90+5x+17+48=180 | | |6y+9|=3 | | 20.00–r=8.43 | | 1/4(x-9)=3 | | x-7=-4/3x+7/3 | | 17s-8s=18 | | .6x+.16=-0.75x+1 | | 485b=4994*18b | | $20.00–r=$8.43 | | 90=2x+15+35 | | 3m-4(2+5m)=10 | | (9x+1)(3x-7)=0 | | 1.15+x=75.75 | | 4x+2x-24=18 | | 3.1x+1.2=1.82 | | 6w-5/2=-5/2w-5/3 | | 3n+3=-204 | | 2y=5y-15 | | 12x+14+76+1+5x=180 | | 5(2x+19)=3 | | 75+3x+5+58=180 | | --2(x+2)+7=3(x-6) | | 3f-6=14 | | 8908/32948=45876*98b | | (5x+5)(2x-8)=0 | | 7x-4=7x+8 | | 2x+15+30=4x | | +2=4k-10 | | x9=812 | | -x+7=-6x+8 |