100=n(2+n)

Simple and best practice solution for 100=n(2+n) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100=n(2+n) equation:



100=n(2+n)
We move all terms to the left:
100-(n(2+n))=0
We add all the numbers together, and all the variables
-(n(n+2))+100=0
We calculate terms in parentheses: -(n(n+2)), so:
n(n+2)
We multiply parentheses
n^2+2n
Back to the equation:
-(n^2+2n)
We get rid of parentheses
-n^2-2n+100=0
We add all the numbers together, and all the variables
-1n^2-2n+100=0
a = -1; b = -2; c = +100;
Δ = b2-4ac
Δ = -22-4·(-1)·100
Δ = 404
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{404}=\sqrt{4*101}=\sqrt{4}*\sqrt{101}=2\sqrt{101}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{101}}{2*-1}=\frac{2-2\sqrt{101}}{-2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{101}}{2*-1}=\frac{2+2\sqrt{101}}{-2} $

See similar equations:

| 367-2x=17+7x | | 2(g-19)=(-6) | | 2t+4/3t=0.5 | | x÷6-2/3=3 | | 6=10y-8y | | 3y+5y-4=20 | | 7x=x=18 | | S+5s+3=15 | | -5(2n+3)=-5n | | 8.2x−3.7x=-72 | | 9÷v=(-3) | | 4(2.5)+3y=0 | | 9÷x=-3 | | 4(x-7)=35 | | 8w+(-15)w-9=12 | | -6(2.5)-6y=0 | | 6(y+6)=4(y–6)+2y | | b/2+1/5=17 | | 3p+10=7p-20 | | 8(2.5)+6y=5 | | 2x-3(x-5)=4x-27-2x | | 3/2+2m/9=41/18 | | -3a=-30 | | 19c–c–13c+2c=7 | | 12(4x+8)−2=14(8x+8) | | -16x^2+110x+80=20 | | 2(x+3)=4=16 | | 2/9=8/y | | x-9/4=-7 | | 2y+9-6y=-9 | | -5/6x+13=1/6x+17 | | -(2x/3)=-4 |

Equations solver categories