If it's not what You are looking for type in the equation solver your own equation and let us solve it.
100=122-16t^2
We move all terms to the left:
100-(122-16t^2)=0
We get rid of parentheses
16t^2-122+100=0
We add all the numbers together, and all the variables
16t^2-22=0
a = 16; b = 0; c = -22;
Δ = b2-4ac
Δ = 02-4·16·(-22)
Δ = 1408
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1408}=\sqrt{64*22}=\sqrt{64}*\sqrt{22}=8\sqrt{22}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{22}}{2*16}=\frac{0-8\sqrt{22}}{32} =-\frac{8\sqrt{22}}{32} =-\frac{\sqrt{22}}{4} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{22}}{2*16}=\frac{0+8\sqrt{22}}{32} =\frac{8\sqrt{22}}{32} =\frac{\sqrt{22}}{4} $
| 6-3(l-5)=2(l-5) | | x-0.6x=0.2 | | .74x+2.5x=100 | | 1/2(6x-10)-x=(3x-5) | | 7y+3(y-7)=-11 | | 54-n=24 | | -10=10+7x | | x-7.2=9.3 | | 5+0.65x=10+.046x | | 19-3x=2x+4x | | x/20-142=200 | | 8z-7=2z+5z | | x-18/6=80 | | 10q-8=32 | | 12+2s=4s-12 | | 2/(280=12*x) | | 4.16666667+0.75x=5.666667+0.5x | | 60/y=0 | | -164=50x+36 | | -7+y/2=1 | | x^2=-17x+72.26 | | x^2=17x-72.26 | | y+3.8=14.7 | | 3^(11-2x)=243 | | 5(3-n)=35 | | x^2-2x-575=0 | | 9*4=x-2(x-2)(x+4) | | 2.3(x+1.4)=-9.60 | | 26e+891=-710 | | 88.1-2.8f=72.46 | | (2x+8-26=41-9x-13.x) | | 0.875h-0.625=20 |