100=1.75(x*x)-4x

Simple and best practice solution for 100=1.75(x*x)-4x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100=1.75(x*x)-4x equation:



100=1.75(x*x)-4x
We move all terms to the left:
100-(1.75(x*x)-4x)=0
We add all the numbers together, and all the variables
-(1.75(+x*x)-4x)+100=0
We calculate terms in parentheses: -(1.75(+x*x)-4x), so:
1.75(+x*x)-4x
We add all the numbers together, and all the variables
-4x+1.75(+x*x)
We multiply parentheses
1.75x^2-4x
Back to the equation:
-(1.75x^2-4x)
We get rid of parentheses
-1.75x^2+4x+100=0
a = -1.75; b = 4; c = +100;
Δ = b2-4ac
Δ = 42-4·(-1.75)·100
Δ = 716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{716}=\sqrt{4*179}=\sqrt{4}*\sqrt{179}=2\sqrt{179}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{179}}{2*-1.75}=\frac{-4-2\sqrt{179}}{-3.5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{179}}{2*-1.75}=\frac{-4+2\sqrt{179}}{-3.5} $

See similar equations:

| 2x-x-4-2=8 | | -2(1+7)+3v=-4(4v-2)+6 | | 16x^2=32x+20 | | -87=-6k-(7+4k) | | 5=4m | | 8.5=6.5(2d-3)=d | | -7x=11-4(x-1) | | 6x^2-72x-648=0 | | 4(-6x+10=92/5 | | 10=-5r-4r | | -7x11=-4(x-1) | | 5m-17-5=2m | | 3x*2-2x*2=3x+5-5+10 | | 3(y-9)=8y-37 | | 4(-6x+10)=9 | | (n-3)/4+(n=5)/7=5/14 | | 58=1.9t+9.8t^2/2 | | 186=6n+3(6n-2) | | (x-4)/6=(x-7)/9 | | 4x^2-2x^2=4+4+8 | | 5m-5-5=15 | | -x-9=-5x-7 | | 8x+78=12x-2 | | -2(5+6m)-16=-20 | | 7h+22=-5 | | 4(5+2x)+7x=−5 | | z-7z=4z-7-z | | 11.4+x-1.1-2.6=x+7.7 | | x+11=-x+27 | | 2.4m=2 | | 3y-3=12y+7 | | 2x+5x=-3x-2+1-2+1+5 |

Equations solver categories