If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 1000 = 0.5n(9.6 + (n + -1) * 2.8) Reorder the terms: 1000 = 0.5n(9.6 + (-1 + n) * 2.8) Reorder the terms for easier multiplication: 1000 = 0.5n(9.6 + 2.8(-1 + n)) 1000 = 0.5n(9.6 + (-1 * 2.8 + n * 2.8)) 1000 = 0.5n(9.6 + (-2.8 + 2.8n)) Combine like terms: 9.6 + -2.8 = 6.8 1000 = 0.5n(6.8 + 2.8n) 1000 = (6.8 * 0.5n + 2.8n * 0.5n) 1000 = (3.4n + 1.4n2) Solving 1000 = 3.4n + 1.4n2 Solving for variable 'n'. Reorder the terms: 1000 + -3.4n + -1.4n2 = 3.4n + -3.4n + 1.4n2 + -1.4n2 Combine like terms: 3.4n + -3.4n = 0.0 1000 + -3.4n + -1.4n2 = 0.0 + 1.4n2 + -1.4n2 1000 + -3.4n + -1.4n2 = 1.4n2 + -1.4n2 Combine like terms: 1.4n2 + -1.4n2 = 0.0 1000 + -3.4n + -1.4n2 = 0.0 Begin completing the square. Divide all terms by -1.4 the coefficient of the squared term: Divide each side by '-1.4'. -714.2857143 + 2.428571429n + n2 = 0 Move the constant term to the right: Add '714.2857143' to each side of the equation. -714.2857143 + 2.428571429n + 714.2857143 + n2 = 0 + 714.2857143 Reorder the terms: -714.2857143 + 714.2857143 + 2.428571429n + n2 = 0 + 714.2857143 Combine like terms: -714.2857143 + 714.2857143 = 0.0000000 0.0000000 + 2.428571429n + n2 = 0 + 714.2857143 2.428571429n + n2 = 0 + 714.2857143 Combine like terms: 0 + 714.2857143 = 714.2857143 2.428571429n + n2 = 714.2857143 The n term is 2.428571429n. Take half its coefficient (1.214285715). Square it (1.474489798) and add it to both sides. Add '1.474489798' to each side of the equation. 2.428571429n + 1.474489798 + n2 = 714.2857143 + 1.474489798 Reorder the terms: 1.474489798 + 2.428571429n + n2 = 714.2857143 + 1.474489798 Combine like terms: 714.2857143 + 1.474489798 = 715.760204098 1.474489798 + 2.428571429n + n2 = 715.760204098 Factor a perfect square on the left side: (n + 1.214285715)(n + 1.214285715) = 715.760204098 Calculate the square root of the right side: 26.753695148 Break this problem into two subproblems by setting (n + 1.214285715) equal to 26.753695148 and -26.753695148.Subproblem 1
n + 1.214285715 = 26.753695148 Simplifying n + 1.214285715 = 26.753695148 Reorder the terms: 1.214285715 + n = 26.753695148 Solving 1.214285715 + n = 26.753695148 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1.214285715' to each side of the equation. 1.214285715 + -1.214285715 + n = 26.753695148 + -1.214285715 Combine like terms: 1.214285715 + -1.214285715 = 0.000000000 0.000000000 + n = 26.753695148 + -1.214285715 n = 26.753695148 + -1.214285715 Combine like terms: 26.753695148 + -1.214285715 = 25.539409433 n = 25.539409433 Simplifying n = 25.539409433Subproblem 2
n + 1.214285715 = -26.753695148 Simplifying n + 1.214285715 = -26.753695148 Reorder the terms: 1.214285715 + n = -26.753695148 Solving 1.214285715 + n = -26.753695148 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1.214285715' to each side of the equation. 1.214285715 + -1.214285715 + n = -26.753695148 + -1.214285715 Combine like terms: 1.214285715 + -1.214285715 = 0.000000000 0.000000000 + n = -26.753695148 + -1.214285715 n = -26.753695148 + -1.214285715 Combine like terms: -26.753695148 + -1.214285715 = -27.967980863 n = -27.967980863 Simplifying n = -27.967980863Solution
The solution to the problem is based on the solutions from the subproblems. n = {25.539409433, -27.967980863}
| 1/(2x-1) | | y=13-0.6666666667(19.5-1.5y) | | 3x17/4(6^2) | | 3x+10x+2x-45=180 | | p*p*(1-p)(1-p)(1-p)(1-p)(1-p)(1-p)=0 | | 18=-5b+17 | | 7y+6x=226 | | 19.5-1.5y=x | | 27.2=3/4y | | 8x+8=40whatisx | | x=19.5-1.5y | | 12x^3=24x | | 12x^3+24x=0 | | 3x+10=5x+24 | | 5/6s-2/3 | | Z=5-6i | | 12x+7=47 | | 15x-9=8x-3 | | 6x^2+90*x-1500=0 | | 2(1.5x+4.5)-2(2.5+2.5)= | | 3(2+x)=x-2 | | -4x-7=3x+7 | | 4x-2dc+cx-8d= | | y^5+y^3+y=42 | | 4x+12=20# | | 2x+3a=b | | 2x+3y+4z=39 | | 33=9-81 | | x^3-8x^2+10x+24=0 | | 4(3y-5)=(4y+4) | | 9on(7x)=27 | | 15-x=0.25x |