100/t=4.9*t+2

Simple and best practice solution for 100/t=4.9*t+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 100/t=4.9*t+2 equation:



100/t=4.9t+2
We move all terms to the left:
100/t-(4.9t+2)=0
Domain of the equation: t!=0
t∈R
We get rid of parentheses
100/t-4.9t-2=0
We multiply all the terms by the denominator
-(4.9t)*t-2*t+100=0
We add all the numbers together, and all the variables
-(+4.9t)*t-2*t+100=0
We add all the numbers together, and all the variables
-2t-(+4.9t)*t+100=0
We multiply parentheses
-4t^2-2t+100=0
a = -4; b = -2; c = +100;
Δ = b2-4ac
Δ = -22-4·(-4)·100
Δ = 1604
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1604}=\sqrt{4*401}=\sqrt{4}*\sqrt{401}=2\sqrt{401}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2)-2\sqrt{401}}{2*-4}=\frac{2-2\sqrt{401}}{-8} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2)+2\sqrt{401}}{2*-4}=\frac{2+2\sqrt{401}}{-8} $

See similar equations:

| 4x-3=-9x+2 | | 3-9x=–7x-35 | | 3a^+5=152 | | 12x–3–5x=9+7x–6 | | -4a+24+7a=2a-5a | | 4+x+6x=-80 | | 6x+2=4x+2+2x | | 4.9t^2+2t-100=0 | | 5x-2x-3-9=x-12+3x=3x | | -4=2-5x/4 | | 1+t=1×12 | | 5.6x=30 | | 5u+4u=18 | | 4p+5=2p-9 | | 5u+4u=24 | | 4a-3=26+6 | | 6(x-3)=2x+3 | | 5x-3=7-15x | | 3w=10+9 | | 3.9x+2.15=-12.22 | | -7-49=7(y-9) | | 3y-12=2 | | 5u+u=24 | | 8=t/10 | | 2p/3+13=5 | | 3x+70=100 | | 15x-35-20x=-14+2x+7 | | 11-11=10-x | | 15x-35-20x=-14+2x7 | | 5(w+1)=2w-4 | | 2=7+5u | | 5(w+1)=2w+4 |

Equations solver categories