If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10/m+18-7/8m=3/8m+25
We move all terms to the left:
10/m+18-7/8m-(3/8m+25)=0
Domain of the equation: m!=0
m∈R
Domain of the equation: 8m!=0
m!=0/8
m!=0
m∈R
Domain of the equation: 8m+25)!=0We get rid of parentheses
m∈R
10/m-7/8m-3/8m-25+18=0
We calculate fractions
80m/8m^2+(-3m-7)/8m^2-25+18=0
We add all the numbers together, and all the variables
80m/8m^2+(-3m-7)/8m^2-7=0
We multiply all the terms by the denominator
80m+(-3m-7)-7*8m^2=0
Wy multiply elements
-56m^2+80m+(-3m-7)=0
We get rid of parentheses
-56m^2+80m-3m-7=0
We add all the numbers together, and all the variables
-56m^2+77m-7=0
a = -56; b = 77; c = -7;
Δ = b2-4ac
Δ = 772-4·(-56)·(-7)
Δ = 4361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4361}=\sqrt{49*89}=\sqrt{49}*\sqrt{89}=7\sqrt{89}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(77)-7\sqrt{89}}{2*-56}=\frac{-77-7\sqrt{89}}{-112} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(77)+7\sqrt{89}}{2*-56}=\frac{-77+7\sqrt{89}}{-112} $
| 56-1z/6=-z | | x2+8x-7=0 | | 7n-2n=16-3n | | 4(8x-1)+1=32x-7 | | F(-x)=-3(-x)+5 | | 6x+9=-7x-1 | | -5m+13+6m=-4 | | 9/x=36/48 | | 1/2x+6=-3/2x-8 | | 4k+45=14k+15 | | -9(4x-8)-1=-35x+76 | | 2(y-7)+4=-2 | | 6-(1•3.3)=z | | 9=+4x=-10x-5 | | -4-3m=9(3-m) | | -9x=4x+3 | | -54=-9(4+2z) | | 4(x+5)-6(6x-9)=15 | | 7f−3=4f+6 | | 7-(1•3.3)=z | | -5x/3+2=23 | | -9-5m=9m | | 6050=5000(1+x)2 | | F(1)=-4f(6) | | 21=m+117/12 | | 6n-5+2=5+5n | | 7(-9x+3)=7(-8x+7) | | 1p+15=2 | | 20(p+8)=940 | | 4b/3b=18 | | 4x+14=6x=-2.3 | | 4(3x+8)=-42+2 |