10/3x+4+7x-7+5x-1=180

Simple and best practice solution for 10/3x+4+7x-7+5x-1=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10/3x+4+7x-7+5x-1=180 equation:



10/3x+4+7x-7+5x-1=180
We move all terms to the left:
10/3x+4+7x-7+5x-1-(180)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
12x+10/3x-184=0
We multiply all the terms by the denominator
12x*3x-184*3x+10=0
Wy multiply elements
36x^2-552x+10=0
a = 36; b = -552; c = +10;
Δ = b2-4ac
Δ = -5522-4·36·10
Δ = 303264
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{303264}=\sqrt{11664*26}=\sqrt{11664}*\sqrt{26}=108\sqrt{26}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-552)-108\sqrt{26}}{2*36}=\frac{552-108\sqrt{26}}{72} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-552)+108\sqrt{26}}{2*36}=\frac{552+108\sqrt{26}}{72} $

See similar equations:

| 9+1x=-4+2x | | -3(2n-5)=0.5(-12n=30) | | 396=9(8x+4) | | 3(-7x+2)=-7-36 | | y=0.17+3 | | 200x-80=96x+336 | | 8y+12=-22-9y | | X(5x-2)(x+4)=0 | | 2/1=14/x | | 3/10.50=p/10 | | 600+2m=1000+3m | | 3y-1=6y+8 | | 4-7x=+3-6x | | 600+2m=1000-600 | | -4+8x=10x | | 4^3=w/2^3 | | -x(x+17)=-60 | | 9x2+36x+37=0 | | (7x/7)=(-3/7) | | 6-5x=-1+5x | | 3/4y+16=2-1/8y | | 2+7x=+8-5x | | 4x-6+114=-4+20 | | 55+19.50x=250 | | 9+-3y=-3y+9 | | 9^2=n/3 | | 3/5x+1/3=1/3x+2/3 | | 5+3x=+7-3x | | 4+(t)=10 | | 19.50+55x=250 | | −9i(2−i)=0 | | -3z+9=-4z+5 |

Equations solver categories