10/3x+1=2/x+3

Simple and best practice solution for 10/3x+1=2/x+3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10/3x+1=2/x+3 equation:



10/3x+1=2/x+3
We move all terms to the left:
10/3x+1-(2/x+3)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
Domain of the equation: x+3)!=0
x∈R
We get rid of parentheses
10/3x-2/x-3+1=0
We calculate fractions
10x/3x^2+(-6x)/3x^2-3+1=0
We add all the numbers together, and all the variables
10x/3x^2+(-6x)/3x^2-2=0
We multiply all the terms by the denominator
10x+(-6x)-2*3x^2=0
Wy multiply elements
-6x^2+10x+(-6x)=0
We get rid of parentheses
-6x^2+10x-6x=0
We add all the numbers together, and all the variables
-6x^2+4x=0
a = -6; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·(-6)·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{16}=4$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*-6}=\frac{-8}{-12} =2/3 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*-6}=\frac{0}{-12} =0 $

See similar equations:

| 3c+6=39 | | 1/3x-4=28 | | 21=–3p+12 | | 3=4d–9 | | 3−4k-5=1−4k-1 | | 2(8)+p=35 | | 10+b3=13 | | 5x^2-24=-26x | | -9-4x=-2-3x | | 25=19+u | | 2−5y-8=9-3−5y | | Y+2/4-y-14/5=2 | | 55=–5d | | 3(x-5x)=-10+2 | | (5y+6)+(4y+8)=146 | | 6.4(p+3)=36 | | -3-x/4=1 | | 1/b-10=24 | | 6.4x-10=4.4x=6 | | x+70+x+68=180 | | -8+12x=12x-8 | | 5.5a+3=10.5 | | 9+5a=24 | | 2a-12=32 | | y+74+2y+91=180 | | 2x/3=4.5/4 | | 5(g+1)=60 | | 4x–2=22 | | 17.2−5y-8=9-3−5y | | Y=1/2x(-4)-3 | | 50=10+2q | | 14.8+4k=-10+k |

Equations solver categories