10-q2=4q+1

Simple and best practice solution for 10-q2=4q+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10-q2=4q+1 equation:



10-q2=4q+1
We move all terms to the left:
10-q2-(4q+1)=0
We add all the numbers together, and all the variables
-1q^2-(4q+1)+10=0
We get rid of parentheses
-1q^2-4q-1+10=0
We add all the numbers together, and all the variables
-1q^2-4q+9=0
a = -1; b = -4; c = +9;
Δ = b2-4ac
Δ = -42-4·(-1)·9
Δ = 52
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{52}=\sqrt{4*13}=\sqrt{4}*\sqrt{13}=2\sqrt{13}$
$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{13}}{2*-1}=\frac{4-2\sqrt{13}}{-2} $
$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{13}}{2*-1}=\frac{4+2\sqrt{13}}{-2} $

See similar equations:

| 6+(3x+18)-7=(5x+1)-4 | | x-0.78x=88 | | 4+5+(2x-3)=x-(3x+10)5+2(2x+3)=3(x+10) | | 4+5+(2x-3)=x-(3x+10)5.2(2x+3)=3(x+10) | | 3+3+(2x-5)=6 | | 16x^​2​​+64x+64=0 | | 18-2b=0 | | 16x​2​​+64x+64=0 | | -5n=12-n | | 7x-25=5x+1 | | 24/4y=6 | | 0.7(3*0.7+4x)=0 | | c-5/11c=42 | | 2*1–2=p | | y+9=38 | | 6x=3•44-120 | | -3=5m-4 | | X+1÷8=x-3÷2 | | 3x/9=-13/5 | | 3(6s-3s)=72 | | 4(3+x)=4x+12 | | 2n/2=10=n | | 2n+3=21=n | | -15=9-2x-3 | | 128^x=64 | | 36/100xY=45 | | x3=9x+28 | | 1x/2+3x/5=7x/8-36 | | 2n÷2=10 | | 7k^2-6k+3=3 | | 2(3x+2)+17–x+7x=180 | | 7x+10x+20=700 |

Equations solver categories