10+4x=5x(x+6)+33

Simple and best practice solution for 10+4x=5x(x+6)+33 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10+4x=5x(x+6)+33 equation:



10+4x=5x(x+6)+33
We move all terms to the left:
10+4x-(5x(x+6)+33)=0
We calculate terms in parentheses: -(5x(x+6)+33), so:
5x(x+6)+33
We multiply parentheses
5x^2+30x+33
Back to the equation:
-(5x^2+30x+33)
We get rid of parentheses
-5x^2+4x-30x-33+10=0
We add all the numbers together, and all the variables
-5x^2-26x-23=0
a = -5; b = -26; c = -23;
Δ = b2-4ac
Δ = -262-4·(-5)·(-23)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-6\sqrt{6}}{2*-5}=\frac{26-6\sqrt{6}}{-10} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+6\sqrt{6}}{2*-5}=\frac{26+6\sqrt{6}}{-10} $

See similar equations:

| 3(x−7)=138+3x | | 1/3(x+4)=25 | | -10a+35=-a^2 | | n+0.6=n+0.1+2 | | 88=-8(b-8) | | 7x-12-12x=x+12 | | (x+40)+3x=90 | | 42/6=16/n | | -101/2=11/2k-3/2-6 | | X^2-17y^2=1 | | X(x-17)-18x=(x-3)(×+16) | | 5=80/2y | | 9x+36=135 | | -92=6-7(-1+5p) | | 3x/3-5/2=1-x/2 | | 37x-9=120 | | (3x-3)=(8x+5) | | 4x+6x-x+4=9x+6x-10 | | -2x+3=-3x- | | 2K(k+11)-11=0 | | 5(x-2)+3=2(3x+4) | | 4/3=(7/6x4/3) | | 2x+2=4x-16 | | 25-4(6y+5+2y=16-11(2y+1) | | K+5+3=10+2k | | 2/3x+6=1/3x-3 | | (x+4)^5/6=-3 | | t+1=2 | | 32-5x-x-2-4x-8=32 | | m+27=126 | | 4x-12=-6x+4 | | m+26=126 |

Equations solver categories