10(x-2)+13=(5X-1)(1+5X)

Simple and best practice solution for 10(x-2)+13=(5X-1)(1+5X) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 10(x-2)+13=(5X-1)(1+5X) equation:



10(x-2)+13=(5x-1)(1+5x)
We move all terms to the left:
10(x-2)+13-((5x-1)(1+5x))=0
We add all the numbers together, and all the variables
10(x-2)-((5x-1)(5x+1))+13=0
We use the square of the difference formula
25x^2+10(x-2)+1+13=0
We multiply parentheses
25x^2+10x-20+1+13=0
We add all the numbers together, and all the variables
25x^2+10x-6=0
a = 25; b = 10; c = -6;
Δ = b2-4ac
Δ = 102-4·25·(-6)
Δ = 700
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{700}=\sqrt{100*7}=\sqrt{100}*\sqrt{7}=10\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10\sqrt{7}}{2*25}=\frac{-10-10\sqrt{7}}{50} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10\sqrt{7}}{2*25}=\frac{-10+10\sqrt{7}}{50} $

See similar equations:

| 8x=4(x-1)=15x-10 | | Y+1/2x=3 | | 3x+6(5x+20)=-78 | | k(3)=13(3)−2 | | 100/2x+3=2x+7 | | 5^(6-2x)=1 | | 3x+6(5x+20)=194 | | 9x−14=-5 | | -4+2p=20 | | 8x−2=78 | | 4(5-x)+8=12(2x-1) | | 5/8+w=7/9 | | m-1+8m=-1-6m-4m | | 3x+6(5x+16)=194 | | 12=4(y+7)-8y | | x÷5+18=23 | | -9m=1 | | b/5+4=12 | | 3x+2-5x=-3x+7 | | 2x+69-7=6x | | 8(x+1)+14=4(4x+5)+10 | | -5(-x-3)=-4x-3 | | -2x-4(-7x+21)=124 | | 19=2p=3 | | 8x+6-15x=-5x+4 | | 4x-7/2=13/14 | | 2x−2=14 | | 8(x+1)+14=4(4+5)+10 | | (3x^2)-(-52x)+169=0 | | 41=9s-40 | | 8(4-3x)=53-3(x-5) | | -9(x+19)-4x=-2 |

Equations solver categories