If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10(2)=6(2)+b(2)
We move all terms to the left:
10(2)-(6(2)+b(2))=0
We add all the numbers together, and all the variables
-(+b^2+62)+102=0
We get rid of parentheses
-b^2-62+102=0
We add all the numbers together, and all the variables
-1b^2+40=0
a = -1; b = 0; c = +40;
Δ = b2-4ac
Δ = 02-4·(-1)·40
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*-1}=\frac{0-4\sqrt{10}}{-2} =-\frac{4\sqrt{10}}{-2} =-\frac{2\sqrt{10}}{-1} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*-1}=\frac{0+4\sqrt{10}}{-2} =\frac{4\sqrt{10}}{-2} =\frac{2\sqrt{10}}{-1} $
| 3(3x−7)=−30 | | 8+9y=y | | 2x^-5x=-1 | | -4=10x=-8 | | -4+10x=8 | | 6^2x=3=6^5x-9 | | 2x^2+7=35 | | 10x-5-7x=5x+15-8 | | 150((1.15)^x-(0.37)^x)=25 | | 6a-14=6a+2 | | 15x^2+1=6x | | m/16-79=-42 | | 19x+43=328 | | 15x^-6x+1=0 | | x+17=22–22–22x=0 | | 2x+4+90=3x+1 | | 83+n=11083+83+n=110+83 | | 83+n=11083+83+n=110+83 n=193 | | .4x-21=63 | | 44+2a(a+10)=180 | | 40+25x=40+25x | | 9x=1-2 | | 30-2/3m+m=40 | | X3+3x2+3=0 | | 30-2/3m=40 | | 1/4=z-1/4 | | 4^x-1=8 | | 38x+72=45 | | 10+(-14)+(-6)+(-2)=y | | 3u+12=9 | | 5(2/5x+3)=3(1/3x-1) | | x4+13x2+42=0 |