If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10(10+8)=9x(9x+11x)
We move all terms to the left:
10(10+8)-(9x(9x+11x))=0
We add all the numbers together, and all the variables
-(9x(+20x))+1018=0
We calculate terms in parentheses: -(9x(+20x)), so:a = -180; b = 0; c = +1018;
9x(+20x)
We multiply parentheses
180x^2
Back to the equation:
-(180x^2)
Δ = b2-4ac
Δ = 02-4·(-180)·1018
Δ = 732960
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{732960}=\sqrt{144*5090}=\sqrt{144}*\sqrt{5090}=12\sqrt{5090}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{5090}}{2*-180}=\frac{0-12\sqrt{5090}}{-360} =-\frac{12\sqrt{5090}}{-360} =-\frac{\sqrt{5090}}{-30} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{5090}}{2*-180}=\frac{0+12\sqrt{5090}}{-360} =\frac{12\sqrt{5090}}{-360} =\frac{\sqrt{5090}}{-30} $
| g-1/2=-6 | | -10-(-6)p=12 | | 8y-(-9=-11 | | 10x^2–12x–8=0 | | 0.529919264x=6.5 | | 5n=2(n)+33 | | 2(3x+1)=2x-7 | | 0.0285=6194402t | | w+2.832=6.601 | | -8a+-23=-15 | | 0.4(10x+22)=3.8(0.2x+5) | | 70=y+22.81 | | 9x-5=4+5x | | X+2/3+x-6/4=1/2 | | Y=4x2+20x-96 | | 8-3x/6=x+2x/3 | | 40d-40d+7d-d-5d=39 | | 3b+4b+3b=20 | | 5x-7=13x+2 | | 63f+4=11 | | 3x-4=13x+2 | | 6*2g+8g=100*4/10 | | 36y/4=5^2+1^4+1 | | 4+7y=138 | | 10c-3c+3c-7c=3 | | 6x×2x×1x= | | 10a-8a-a=7 | | 6.57x+49=43.1649+7x | | 8(n-5)=8(3n+7) | | (5z−3)−(3z−8)= | | 8(7a+5)=8(a+5) | | .2(3x+1)=2x–7 |