1/y-2-1/2=-2y/4y-1

Simple and best practice solution for 1/y-2-1/2=-2y/4y-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/y-2-1/2=-2y/4y-1 equation:



1/y-2-1/2=-2y/4y-1
We move all terms to the left:
1/y-2-1/2-(-2y/4y-1)=0
Domain of the equation: y!=0
y∈R
Domain of the equation: 4y-1)!=0
y∈R
We get rid of parentheses
1/y+2y/4y+1-2-1/2=0
We calculate fractions
(-16y^2)/16y^2+8y^2/16y^2+16y/16y^2+1-2=0
We add all the numbers together, and all the variables
(-16y^2)/16y^2+8y^2/16y^2+16y/16y^2-1=0
We multiply all the terms by the denominator
(-16y^2)+8y^2+16y-1*16y^2=0
We add all the numbers together, and all the variables
8y^2+(-16y^2)+16y-1*16y^2=0
Wy multiply elements
8y^2+(-16y^2)-16y^2+16y=0
We get rid of parentheses
8y^2-16y^2-16y^2+16y=0
We add all the numbers together, and all the variables
-24y^2+16y=0
a = -24; b = 16; c = 0;
Δ = b2-4ac
Δ = 162-4·(-24)·0
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{256}=16$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16}{2*-24}=\frac{-32}{-48} =2/3 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16}{2*-24}=\frac{0}{-48} =0 $

See similar equations:

| 8=6=p/2 | | 14x+-6+-11x=21 | | 4(7x-3)-6=6-4(3x=7) | | 4(-x•4)=12 | | 6x−7=5x+3 | | -40=4(x+-10) | | -40=4(x | | 5w/4=40 | | 4u=-10 | | 6(-3x+1)=5(2x-2) | | 4x–3=3x+4 | | -40=4x+-40 | | 43=2.5t | | (6x-6)=(4x+4) | | 1/4(2(x-1)+6)=x | | 3(6+-1x)=27 | | 9x-6=-96 | | 12=4f-f | | (-1/4)x=6 | | 10=4h+h | | X/5-6=10-x | | 15=4h+h | | 5b=5b= | | -4(x-5)=3x+48 | | 2t+3t-7=4t-7 | | (5x-7)=(6x-16) | | 9y=5y+13 | | -10x=-390 | | 20=6d-d | | 1/4(n-4)=-3/4n+2 | | 16=-4.9x^2+8x+14 | | 5=2c-c |

Equations solver categories