1/x2+4=9

Simple and best practice solution for 1/x2+4=9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/x2+4=9 equation:



1/x2+4=9
We move all terms to the left:
1/x2+4-(9)=0
Domain of the equation: x2!=0
x^2!=0/
x^2!=√0
x!=0
x∈R
We add all the numbers together, and all the variables
1/x2-5=0
We multiply all the terms by the denominator
-5*x2+1=0
We add all the numbers together, and all the variables
-5x^2+1=0
a = -5; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-5)·1
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*-5}=\frac{0-2\sqrt{5}}{-10} =-\frac{2\sqrt{5}}{-10} =-\frac{\sqrt{5}}{-5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*-5}=\frac{0+2\sqrt{5}}{-10} =\frac{2\sqrt{5}}{-10} =\frac{\sqrt{5}}{-5} $

See similar equations:

| 23-89-42x=63 | | 4+5x+7=x | | 6×-6+7=13+7x-6 | | 4x+2*6x=x | | 3(x+2)=3.90 | | 6x-6+7=13+7×-6 | | x^2+28x+205=0 | | -12x2=156 | | 4x+2*6x=23 | | 20x-36=-2x+14 | | F(x)=-x+9x2—24x+14 | | 4(5x−9)=−2(x+7) | | -325/x=13 | | 2x+15=105 | | 6x^2​−18x−240=0 | | 6x^2​​−18x−240=0 | | X+20/100=80-x/100 | | 6y+3+5y+6=13y-7 | | -2(2x-5)+8x=-2(x+3) | | 6200(r4)=1413.60 | | 2x+4x=7 | | (x-1)^2=50 | | 3=4=4x15= | | (x-(5/2))^2=0 | | (13x+9)(5x+9)=180 | | h=-16(6)^2+160(6) | | h=-16(3)^2+160(3) | | -1-(2b-4)=2(b+7)+1 | | x-15=105 | | 40=4r | | 6(3+4x)-4=38 | | x2-22x+40=0 |

Equations solver categories