1/x-2+1/x+3=4/x+x+x-6

Simple and best practice solution for 1/x-2+1/x+3=4/x+x+x-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/x-2+1/x+3=4/x+x+x-6 equation:



1/x-2+1/x+3=4/x+x+x-6
We move all terms to the left:
1/x-2+1/x+3-(4/x+x+x-6)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: x+x+x-6)!=0
x∈R
We add all the numbers together, and all the variables
1/x+1/x-(2x+4/x-6)-2+3=0
We add all the numbers together, and all the variables
1/x+1/x-(2x+4/x-6)+1=0
We get rid of parentheses
1/x+1/x-2x-4/x+6+1=0
We multiply all the terms by the denominator
-2x*x+6*x+1*x+1+1-4=0
We add all the numbers together, and all the variables
7x-2x*x-2=0
Wy multiply elements
-2x^2+7x-2=0
a = -2; b = 7; c = -2;
Δ = b2-4ac
Δ = 72-4·(-2)·(-2)
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{33}}{2*-2}=\frac{-7-\sqrt{33}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{33}}{2*-2}=\frac{-7+\sqrt{33}}{-4} $

See similar equations:

| 0.5x+0.25(x+2)=4.22 | | 32=–8(–6–2a) | | 3x+1=2x+1= | | 3x-10+3x-10+x-10+x-10=360 | | -2=-9x-11 | | 2e–7=15 | | 9x^2-7=9x | | 10x+8+6x-3= | | 4x+10=50-x | | 4x/7=84 | | y*49/65=7/13 | | ((3x-7)-(5x-2))=((3x-7)+(-5x-2)) | | 4(-5x-7)=10x+2 | | y*25/25=5/3 | | -14-13x=0 | | y.25/25=5/13 | | y÷5=20 | | 10-13x=0 | | 2^11-3x=4096 | | P+7÷3p+10=5÷4 | | x^2+x-0.08=0 | | -5x-4=-2x+-1 | | 5x+-4=-2x+-1 | | W=0.5F(x) | | W=0.5Fxx | | 4(2+2x+3)=2(3+3x-5) | | 12(2n+11)=12(n+12) | | 7+5x+4=6+8x-10 | | W=0.5Fx | | 4(m+3)=6m+2 | | 6+5q=10+49 | | (2q-3)(q-3)=18 |

Equations solver categories