1/x+1/(x+11)=1/6

Simple and best practice solution for 1/x+1/(x+11)=1/6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/x+1/(x+11)=1/6 equation:


D( x )

x+11 = 0

x = 0

x+11 = 0

x+11 = 0

x+11 = 0 // - 11

x = -11

x = 0

x = 0

x in (-oo:-11) U (-11:0) U (0:+oo)

1/(x+11)+1/x = 1/6 // - 1/6

1/(x+11)+1/x-(1/6) = 0

1/(x+11)+1/x-1/6 = 0

(1*6*x)/(6*x*(x+11))+(1*6*(x+11))/(6*x*(x+11))+(-1*x*(x+11))/(6*x*(x+11)) = 0

1*6*(x+11)-1*x*(x+11)+1*6*x = 0

12*x-x^2-11*x+66 = 0

x-x^2+66 = 0

x-x^2+66 = 0

x-x^2+66 = 0

DELTA = 1^2-(-1*4*66)

DELTA = 265

DELTA > 0

x = (265^(1/2)-1)/(-1*2) or x = (-265^(1/2)-1)/(-1*2)

x = (265^(1/2)-1)/(-2) or x = (265^(1/2)+1)/2

(x-((265^(1/2)-1)/(-2)))*(x-((265^(1/2)+1)/2)) = 0

((x-((265^(1/2)-1)/(-2)))*(x-((265^(1/2)+1)/2)))/(6*x*(x+11)) = 0

((x-((265^(1/2)-1)/(-2)))*(x-((265^(1/2)+1)/2)))/(6*x*(x+11)) = 0 // * 6*x*(x+11)

(x-((265^(1/2)-1)/(-2)))*(x-((265^(1/2)+1)/2)) = 0

( x-((265^(1/2)+1)/2) )

x-((265^(1/2)+1)/2) = 0 // + (265^(1/2)+1)/2

x = (265^(1/2)+1)/2

( x-((265^(1/2)-1)/(-2)) )

x-((265^(1/2)-1)/(-2)) = 0 // + (265^(1/2)-1)/(-2)

x = (265^(1/2)-1)/(-2)

x in { (265^(1/2)+1)/2, (265^(1/2)-1)/(-2) }

See similar equations:

| 71x+20=450+20x | | 345*2= | | 2x^2+33x-8.5=0 | | m(3m+4)(m-3)=0 | | 7(x+4)-2x=5(x+5)+3 | | 8(x+40)=4(x+1) | | 9x-4=4x+3 | | 9(z+6)-(-8z-9)=16z | | -6r-14+4r=-18+12 | | 3x+2y+5=7x+13 | | 2x^-2/5+3x^-1/5+1=0 | | -5a+8+8a=-1 | | 3h-10+2h+3=5h-7 | | 3(1+n)-(n+7)=n+6+5 | | 10x-35=-8x+1 | | 7(8)-12-2(8)=22+6 | | 4x-6y=z | | 5x-8=-2 | | 3(x+4)-2x=20 | | A=ps+p | | 7t-12-2t=22+6 | | 3x^2+x=x^3+3 | | -2/3(6x/5-7/10)=17/20 | | 5m+48-m=4(m+4) | | 2+14+6=4+10 | | (-15)-2.7= | | 40x-23=62x-81 | | 4/3x+1/2=7/6 | | 100-y-y+3(100-y)-2y=100 | | 15.4-9.1t=2.4t-19.1 | | -9(9)-14+10(9)=7-12 | | -2y+3x=100 |

Equations solver categories