1/x+(-1/2x)=5

Simple and best practice solution for 1/x+(-1/2x)=5 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/x+(-1/2x)=5 equation:



1/x+(-1/2x)=5
We move all terms to the left:
1/x+(-1/2x)-(5)=0
Domain of the equation: x!=0
x∈R
Domain of the equation: 2x)!=0
x!=0/1
x!=0
x∈R
We get rid of parentheses
1/x-1/2x-5=0
We calculate fractions
2x/2x^2+(-x)/2x^2-5=0
We add all the numbers together, and all the variables
2x/2x^2+(-1x)/2x^2-5=0
We multiply all the terms by the denominator
2x+(-1x)-5*2x^2=0
Wy multiply elements
-10x^2+2x+(-1x)=0
We get rid of parentheses
-10x^2+2x-1x=0
We add all the numbers together, and all the variables
-10x^2+x=0
a = -10; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·(-10)·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*-10}=\frac{-2}{-20} =1/10 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*-10}=\frac{0}{-20} =0 $

See similar equations:

| q/16=-12 | | (-45+y)/7=-35 | | 2.5+3x=5x-3 | | f/3=8 | | 16=-5+u/3 | | x+1-2x+4=3x+3 | | 6f=78 | | w-7=44 | | 80+11x+1=180 | | 10-z=6 | | 28-7x=-4(-7x-5) | | 5(2+2x)=30 | | 5(4+x)=420 | | a=21/2+43/8 | | 4x(x+3)=7x+3 | | 20=5(2x+2) | | 5(8+x)=50 | | 2x+3(4x+5)=10x+19 | | 3(2x+5)=3x+5x+5 | | 3(2x+5)=3x+5x+52 | | X+2(x+1)=2x+9 | | 3(5+2x)=x+20 | | (4x+5)+(8x-6)=180 | | 2(4+7x)=6x+16 | | -17w+14w-2w+13w=14 | | 16n-16n+6n=6 | | 3(1x+4)=27 | | 17m-11m=18 | | 4j-5j=12 | | 3(x+3)+x=x+18 | | 7x-8=5× | | y^2+5y=8 |

Equations solver categories