1/p=2p

Simple and best practice solution for 1/p=2p equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/p=2p equation:



1/p=2p
We move all terms to the left:
1/p-(2p)=0
Domain of the equation: p!=0
p∈R
We add all the numbers together, and all the variables
-2p+1/p=0
We multiply all the terms by the denominator
-2p*p+1=0
Wy multiply elements
-2p^2+1=0
a = -2; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-2)·1
Δ = 8
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{8}=\sqrt{4*2}=\sqrt{4}*\sqrt{2}=2\sqrt{2}$
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{2}}{2*-2}=\frac{0-2\sqrt{2}}{-4} =-\frac{2\sqrt{2}}{-4} =-\frac{\sqrt{2}}{-2} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{2}}{2*-2}=\frac{0+2\sqrt{2}}{-4} =\frac{2\sqrt{2}}{-4} =\frac{\sqrt{2}}{-2} $

See similar equations:

| 3(1-3x)=45 | | x=10^2 | | -4(1+p)-3p=4(-2p+1) | | 5(3x+9-2x=15x-2(x-5 | | (3x-3)+(8x-147)=180 | | (2x+3x)/(5x)=0 | | 51=18(4)+b | | 3x+2=x+58 | | 6x+83=3x-6 | | (3x+2)+(8x-147)=180 | | 2.x=70 | | 3x+2=8x-147 | | 3x-7+3x=61 | | 14*y=((7y-8)*2)+40 | | 14*y=((7y-)*2)+40 | | 1/2x+16=29 | | 3/n=7/13 | | 6(2x+5)=-(-x+4) | | 4x-31/5=3 | | 2(4x-1+3)=7(-1)+5 | | 7/5=7/x | | Y=20(2.5)x | | -4+|2x4|=14 | | (5/x+2)-(2x-1/5)=0 | | -7+x+(-48)=25 | | -7+x+(-48)=26 | | 14x+38=108 | | 4-6p+1=27 | | 1+6p-4=27 | | 2/3(3)^x=162 | | 4(3x-5)-3(3x+7)=6(x-1) | | 1y+8=8 |

Equations solver categories