1/m-1/m+1=5/2m+2

Simple and best practice solution for 1/m-1/m+1=5/2m+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/m-1/m+1=5/2m+2 equation:



1/m-1/m+1=5/2m+2
We move all terms to the left:
1/m-1/m+1-(5/2m+2)=0
Domain of the equation: m!=0
m∈R
Domain of the equation: 2m+2)!=0
m∈R
We get rid of parentheses
1/m-1/m-5/2m-2+1=0
We calculate fractions
(-2m+1)/2m^2+(-5m)/2m^2-2+1=0
We add all the numbers together, and all the variables
(-2m+1)/2m^2+(-5m)/2m^2-1=0
We multiply all the terms by the denominator
(-2m+1)+(-5m)-1*2m^2=0
Wy multiply elements
-2m^2+(-2m+1)+(-5m)=0
We get rid of parentheses
-2m^2-2m-5m+1=0
We add all the numbers together, and all the variables
-2m^2-7m+1=0
a = -2; b = -7; c = +1;
Δ = b2-4ac
Δ = -72-4·(-2)·1
Δ = 57
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{57}}{2*-2}=\frac{7-\sqrt{57}}{-4} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{57}}{2*-2}=\frac{7+\sqrt{57}}{-4} $

See similar equations:

| 12x+3x-6=0 | | 5=11x=7(5-2x) | | 9e+4=−5e+14+13=2e | | 1+3x=-17 | | 480=x*5*3x/2 | | 480=x*5*x+x/2 | | 480=3x/2*x*5 | | 9=3x+37=4x | | 4y=-60 | | -18=4w+2 | | 207=124-y | | -x+235=121 | | -y+32=191 | | 8(x+8)-3(2x+8)=2(x+23) | | 164-v=32 | | 187=-y+55 | | 19x-12=3x+4(4x-3) | | 233=-x+185 | | 4=2y-12 | | (2x-8/10)(-22-x/3)=2 | | -1-y-7=0 | | 0-y-7=0 | | 1-y-7=0 | | 2-y-7=0 | | -51=-u/8 | | 7m+9m=-12 | | x+x=552 | | 2y(3+5)=(5*8)-(2*4) | | 8=-8w+5(w+7) | | 2(8+v)=70 | | 251=141-v | | 9^(x-6)=81 |

Equations solver categories