1/9x+28=2/3x

Simple and best practice solution for 1/9x+28=2/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/9x+28=2/3x equation:



1/9x+28=2/3x
We move all terms to the left:
1/9x+28-(2/3x)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
1/9x-(+2/3x)+28=0
We get rid of parentheses
1/9x-2/3x+28=0
We calculate fractions
3x/27x^2+(-18x)/27x^2+28=0
We multiply all the terms by the denominator
3x+(-18x)+28*27x^2=0
Wy multiply elements
756x^2+3x+(-18x)=0
We get rid of parentheses
756x^2+3x-18x=0
We add all the numbers together, and all the variables
756x^2-15x=0
a = 756; b = -15; c = 0;
Δ = b2-4ac
Δ = -152-4·756·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-15}{2*756}=\frac{0}{1512} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+15}{2*756}=\frac{30}{1512} =5/252 $

See similar equations:

| 2x2+9x-7=2x+8 | | 2x+98+90=180 | | -4x+5-2x-10=7 | | 12=x11 | | 2(x+7)=29-x+3(2x-4) | | 22−m=8 | | 0.4x-0.3=5.7 | | 100-4=3p-10p-p | | 3(x^2)=150x | | 3/1/4=1/2w | | 6(1+2x)=2x+26 | | 5(x+3)+3(x+2)=6x+1 | | 4a−11=2a+5 | | -10(x+5)=2(2x+3) | | 2x+65=20x+66 | | (6x+20)+(7x+5)=360 | | 6y-3y+18y=-49+28 | | -2(5x+4)/3=(3x+2)-7/3 | | x2=92416 | | x=120x | | .25(4g-20)=25-5g | | -2/5=1/45a | | 59=w–16+4w | | 8=p/14 | | a6+2=4 | | (2x+5)=3x-27) | | -20+20x=24+8x | | 2x+3=10x+15 | | 1/4(4g-20)=25-5g | | 16-9=5t+9 | | -7/9w=63 | | 2(3x3)=3(5x+0.50 |

Equations solver categories