1/8x+2x+7/8x=-30

Simple and best practice solution for 1/8x+2x+7/8x=-30 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/8x+2x+7/8x=-30 equation:



1/8x+2x+7/8x=-30
We move all terms to the left:
1/8x+2x+7/8x-(-30)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
We add all the numbers together, and all the variables
2x+1/8x+7/8x+30=0
We multiply all the terms by the denominator
2x*8x+30*8x+1+7=0
We add all the numbers together, and all the variables
2x*8x+30*8x+8=0
Wy multiply elements
16x^2+240x+8=0
a = 16; b = 240; c = +8;
Δ = b2-4ac
Δ = 2402-4·16·8
Δ = 57088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{57088}=\sqrt{256*223}=\sqrt{256}*\sqrt{223}=16\sqrt{223}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(240)-16\sqrt{223}}{2*16}=\frac{-240-16\sqrt{223}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(240)+16\sqrt{223}}{2*16}=\frac{-240+16\sqrt{223}}{32} $

See similar equations:

| 3.8x=-12 | | −7(1+3b)−3=−115−21b | | 3t-1=t | | 5m−3=m−2+2m+7 | | −182=−7(8x+2) | | -2m-3=3 | | -6b-3b+-16b+4b+9=-12 | | 2(y−55)=30 | | 3g+35=92 | | |9-4n|=5 | | 16b-9b-7b+3b+b-3=13 | | 9x-20x=-132 | | 4(r−53)=92 | | 5z-z-4z+4z+z-5=10 | | 18x-x=-51 | | 20x+12=18x+28 | | 57=w/9+50 | | 14+5c=50-4c | | 2/3(6x+6)=4x-15 | | -6u+8u+-u-2u-6=-15 | | 2x^2-9x-39=0 | | 4(5x+3)=18+28 | | -6u+8u+-u-2u-6=15 | | -5+6g=-35 | | 12d+5d-15d+1=17 | | -105-x=-127 | | y/8+84=89 | | (2x-4/3)+(x+1/2)=(-8-4x/6)+1 | | 5r-18r+13r+12r-7r+2=-13 | | 2z−19z−4z−–14z+8z=–19 | | 2x^2-9x-18x=0 | | 3×-7=8+6(x+2) |

Equations solver categories