1/8x+1/8=1/7x-1

Simple and best practice solution for 1/8x+1/8=1/7x-1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/8x+1/8=1/7x-1 equation:



1/8x+1/8=1/7x-1
We move all terms to the left:
1/8x+1/8-(1/7x-1)=0
Domain of the equation: 8x!=0
x!=0/8
x!=0
x∈R
Domain of the equation: 7x-1)!=0
x∈R
We get rid of parentheses
1/8x-1/7x+1+1/8=0
We calculate fractions
7x/3584x^2+(-512x)/3584x^2+7x/3584x^2+1=0
We multiply all the terms by the denominator
7x+(-512x)+7x+1*3584x^2=0
We add all the numbers together, and all the variables
14x+(-512x)+1*3584x^2=0
Wy multiply elements
3584x^2+14x+(-512x)=0
We get rid of parentheses
3584x^2+14x-512x=0
We add all the numbers together, and all the variables
3584x^2-498x=0
a = 3584; b = -498; c = 0;
Δ = b2-4ac
Δ = -4982-4·3584·0
Δ = 248004
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{248004}=498$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-498)-498}{2*3584}=\frac{0}{7168} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-498)+498}{2*3584}=\frac{996}{7168} =249/1792 $

See similar equations:

| 10x+50=40 | | X/2+3x/4=25 | | 10(3x-1)=7(3x+1)+9 | | (2y+5)(3+y)=0 | | 7(p-1)-p=3p-13 | | 6/n=72/84 | | -10x-5=11-6x | | 2(x-3)=10+x | | 9m+7=6+7m | | 9m+7=6=7m | | 4x=3=6x-3 | | 2a=(a+1)-1 | | -x^2+51x-110=0 | | ​8q-6=2q-48 | | |4p-7|=3 | | 40x+5(1.5)x=1193.88 | | 40x+5.45(1.5)x=1204.38 | | 71/4x−x=93/ 8 | | 18x^2-5x+3=0 | | 55=3x+16= | | 6-4x=-2/3x-4 | | 7x÷2-19=2 | | 2x-144=-25 | | x+51÷-6=-9 | | 3x-27=-19 | | 5x+75=15 | | `3k^2+5k+1=0 | | 3x18=9x | | 40x+5.75(1.5)x=1204.38 | | x-(7.2)=120 | | (X-16)3=3x | | 40x+5.45(1.5x)=1204.38 |

Equations solver categories