1/8v=20v=

Simple and best practice solution for 1/8v=20v= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1/8v=20v= equation:



1/8v=20v=
We move all terms to the left:
1/8v-(20v)=0
Domain of the equation: 8v!=0
v!=0/8
v!=0
v∈R
We add all the numbers together, and all the variables
-20v+1/8v=0
We multiply all the terms by the denominator
-20v*8v+1=0
Wy multiply elements
-160v^2+1=0
a = -160; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-160)·1
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$v_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*-160}=\frac{0-8\sqrt{10}}{-320} =-\frac{8\sqrt{10}}{-320} =-\frac{\sqrt{10}}{-40} $
$v_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*-160}=\frac{0+8\sqrt{10}}{-320} =\frac{8\sqrt{10}}{-320} =\frac{\sqrt{10}}{-40} $

See similar equations:

| 2/3(z)=18 | | 2x+7.8=22.2 | | 2x+21=127 | | -0,9x+0,7=-1,1-0,45 | | -2-6x=2+6x | | 2x+12+4=4x-2 | | 30+4x=2(-x+2)-10 | | -3=4-x/3 | | 3x-8-90=180 | | 3(x-1)=−12 | | 24/180=x/20 | | 2x-13-2x-25=13 | | H(-3)=3-2a^2 | | x^2+25x-266=0 | | 27y+91+35=180 | | x+12=9~3 | | 2a+3=7a+8 | | 5d-3d=20 | | 39=9/5c+32 | | Y=300(0.60)x | | 15s-14s=2 | | 88+2b+2b=180 | | 8x+2=8x+16 | | 3(x+2)=x+ | | 2x-6+7x-3=180 | | 23+x=16~4 | | 4x^2=64^x | | 40+11c+3c=180 | | 6x-82=2x-50 | | 0=-0.1x^2+0.8x-1.5 | | 11x+15=2x+9x+15 | | 44+3z+5z=180 |

Equations solver categories